

Vocabulary and fitting methods used in X-ray and neutron reflectometry

A. van der Lee

Institut Européen des Membranes Montpellier

september 2014 updates: september 2018, september 2021, may 2023 english version: september 2024

Standardisation and Terminology

Analysis and Methodology

model dependent

- (non-linear) least-squares analysis
- genetic algorithm
- simulated annealing
- model independent
 - multi-slice approach
 - DWBA
 - BA charge flipping
 - Hilbert Transforms

Standardisation desired

- Widespread standardisation in crystallography (CIF)
- Standardisation is underway some initiatives (rfCIF and ORSO project)
- ORSO Open Reflectometry Standards Organisation

NIST develops reflectivity standard?
 VAMAS groups has organised 'round robins

- Widespread standardisation in crystallography (CIF)
- Standardisation is underway some initiatives (rfCIF and ORSO project)
- ORSO Open Reflectometry Standards Organisation
 - website :: https://www.reflectometry.org/ working_proups: reproducibility; file formats; data analy education and priceast).
- NIST develops reflectivity standard ?
- VAMAS groups has organised 'round robins'

- Widespread standardisation in crystallography (CIF)
- Standardisation is underway some initiatives (rfCIF and ORSO project)
- ORSO Open Reflectometry Standards Organisation
 - website : https://www.reflectometry.org/
 - working groups : reproducibility, file formats, data analysis education and outreach
- NIST develops reflectivity standard ?
- VAMAS groups has organised 'round robins'

- Widespread standardisation in crystallography (CIF)
- Standardisation is underway some initiatives (rfCIF and ORSO project)
- ORSO Open Reflectometry Standards Organisation
 - website : https://www.reflectometry.org/
 - working groups : reproducibility, file formats, data analysis, education and outreach
- NIST develops reflectivity standard?
- VAMAS groups has organised 'round robins'

- Widespread standardisation in crystallography (CIF)
- Standardisation is underway some initiatives (rfCIF and ORSO project)
- ORSO Open Reflectometry Standards Organisation
 - website : https://www.reflectometry.org/
 - working groups : reproducibility, file formats, data analysis, education and outreach
- NIST develops reflectivity standard?
- VAMAS groups has organised 'round robins'

- Widespread standardisation in crystallography (CIF)
- Standardisation is underway some initiatives (rfCIF and ORSO project)
- ORSO Open Reflectometry Standards Organisation
 - website : https://www.reflectometry.org/
 - working groups : reproducibility, file formats, data analysis, education and outreach
- NIST develops reflectivity standard ?
- VAMAS groups has organised 'round robins'

- Widespread standardisation in crystallography (CIF)
- Standardisation is underway some initiatives (rfCIF and ORSO project)
- ORSO Open Reflectometry Standards Organisation
 - website : https://www.reflectometry.org/
 - working groups : reproducibility, file formats, data analysis, education and outreach
- NIST develops reflectivity standard?
- VAMAS groups has organised 'round robins'

- Widespread standardisation in crystallography (CIF)
- Standardisation is underway some initiatives (rfCIF and ORSO project)
- ORSO Open Reflectometry Standards Organisation
 - website : https://www.reflectometry.org/
 - working groups : reproducibility, file formats, data analysis, education and outreach
- NIST develops reflectivity standard?
- VAMAS groups has organised 'round robins'

Standardisation desired

- Widespread standardisation in crystallography (CIF)
- Standardisation is underway some initiatives (rfCIF and ORSO project)
- ORSO Open Reflectometry Standards Organisation
 - website : https://www.reflectometry.org/
 - working groups : reproducibility, file formats, data analysis, education and outreach
- NIST develops reflectivity standard?
- VAMAS groups has organised 'round robins'

It is up to you to read and understand the different terminologies !

(Schrödinger equation)

The scattering wave vector \mathbf{k} and the wave number k

 $\begin{aligned} k &= k_0 \sin \theta = 2\pi \sin \theta / \lambda \\ q &= 2k = |\mathbf{q}| = |\mathbf{k}^e - \mathbf{k}^i| = 4\pi \sin \theta / \lambda \\ q \text{ is called the momentum transfer vertex} \end{aligned}$

The scattering wave vector \mathbf{k} and the wave number k

 $\begin{aligned} k &= k_0 \sin \theta = 2\pi \sin \theta / \lambda \\ q &= 2k = |\mathbf{q}| = |\mathbf{k}^e - \mathbf{k}^i| = 4\pi \sin \theta / \lambda \\ q \text{ is called the momentum transfer vertex} \end{aligned}$

The scattering potential V

the scattering potential V(z) is expressed, as k^2 , $Å^{-2}$ units, but mostly the scattering length density (SLD) $\rho(z)$ is used :

$$V(z) = 4\pi\rho(z)$$

Rewrite the Schrödinger equation as :

$$\psi''(k,z) + (k^2 - V(z))\psi(k,z) = \psi''(k,z) + k_f^2\psi(k,z) = 0$$

vacuum
$$\Rightarrow$$
 $V(z) = 0 \Rightarrow$ $n(z) = 1$
layer \Rightarrow $V(z) \neq 0 \Rightarrow$ $n_f(z) \neq 1$

Rewrite the Schrödinger equation as :

$$\psi''(k,z) + (k^2 - V(z))\psi(k,z) = \psi''(k,z) + k_f^2\psi(k,z) = 0$$

$$ext{vacuum} \Rightarrow V(z) = 0 \Rightarrow n(z) = 1$$
 $ext{layer} \Rightarrow V(z)
eq 0 \Rightarrow n_f(z)
eq 1$

The ratio between the vacuum wave number and the film wave number is the refractive index :

$$n(z) = k_f/k = \sqrt{1.0 - V(z)/k^2}$$

For X-rays (0.2Å $\lesssim \lambda \lesssim$ 6.0Å) :

$$n(z) = 1.0 - \frac{\lambda^2}{2\pi}\rho(z) = 1.0 - \frac{\lambda^2 r_0}{2\pi} \sum n_j(z)(Z_j + f'_j + if''_j) = 1.0 - \frac{\lambda^2 r_0}{2\pi} N_A \rho_m \frac{\sum c_j(Z_j + f'_j + if''_j)}{\sum c_j A_j}$$

où :

- ► r_0 : classical radius of the electron (Thomson; $r_0 = 2.8179.10^{-5}$ Å)
- n_j: the number of atoms of element j per unit volume
- ► c_j : relative weight of element j in the chemical formula $c_1Ac_2Bc_3C\cdots$. Ex. :SiO2 \Rightarrow $c_{Si}=1$; $c_0=2$
- Z_j : number of electrons of element j
- ► f'_j, f''_j : dispersion correction (real, imaginary) for element j

For neutrons the following equation should be used :

$$n(z) = 1.0 - rac{\lambda^2}{2\pi}
ho(z) = 1.0 - rac{\lambda^2}{2\pi}\sum n_j(z)(b_{j,\mathrm{coh}} + ib_{j,\mathrm{abs}})$$

où :

- \blacktriangleright ρ : scattering length density
- *n_i* : the number of atoms of element *j* per unit volume
- b_j : scattering length for nucleus j

Origins of reflectivity

Refractive index - real part

Refractive index :

$$n = 1.0 - \delta - i\beta$$

Origins of reflectivity

Refractive index - real part

Refractive index :

$$n = 1.0 - \delta - i\beta$$

Real part of refractive index - main information

—Origins of reflectivity

Refractive index - real part

Conversion formula's between refractive index and densities

Refractive index $\textit{n} = 1.0 - \delta - i\beta$; SLD $\rho = \rho' + i\rho''$

Between δ and ρ :

$$\delta = \frac{\lambda^2}{2\pi} \rho'$$

Entre δ et ρ_{e} :

$$\delta = \frac{\lambda^2}{2\pi} r_0 \rho_{\rm e}$$

Entre δ et ρ_n :

$$\delta = \frac{\lambda^2}{2\pi} r_0 \rho_{\mathsf{n}} \sum c_j (Z_j + f'_j)$$

Entre δ et $\rho_{\rm m}$:

$$\delta = \frac{\lambda^2}{2\pi} r_0 N_{\rm A} \rho_{\rm m} \frac{\sum c_j (Z_j + f_j')}{\sum c_j A_j}$$

Origins of reflectivity

Refractive index - real part

Conversion formula's between refractive index and critical wave vector

Snell's law : $n \cos \theta' = \cos \theta$ Definition of critical angle (because n < 1) : $\cos \theta_c = n$ Taylor expansion : $\cos \theta_c \approx 1 - \theta^2/2$

Between θ_{c} and δ :

$$\theta_{\rm c} = \sqrt{2\delta}$$

Between q_c and δ :

$$q_{\sf c} = rac{4\pi}{\lambda} \sqrt{2\delta}$$

Between q_{c} and ρ_{e} :

$$q_{
m c} = 4\sqrt{\pi
ho_{
m e}r_0} pprox 0.03763\sqrt{
ho_{
m e}}
m \AA$$

Between $q_{\rm c}$ and ρ' :

$$q_{\mathsf{c}} = 4\sqrt{\pi
ho'} pprox 7.088 \sqrt{
ho'}$$

Origins of reflectivity

Refractive index - real part

Les convertisseurs SLD $\rho \leftrightarrow \rho_{\rm m}$

Origins of reflectivity

Refractive index - imaginary part

Refractive index :

$$n = 1.0 - n' - in'' = 1.0 - \delta - i\beta$$

Origins of reflectivity

Refractive index - imaginary part

Refractive index :

$$n = 1.0 - n' - in'' = 1.0 - \delta - i\beta$$

Absorption and X-rays : confusion !

Origins of reflectivity

Refractive index - imaginary part

Conversion formula's for absorption coefficients

The cross section of atomic photoabsorption (units : cm²)

$$\sigma_{\rm pe} = \frac{4\pi r_0 f''}{k_0} = 2\lambda r_0 f''$$

Mass attenuation factor (σ_{pe} per gram, units : cm²/g) :

$$\mu_{\rm m} = \mathit{N}_{\sf A} \sigma_{\sf pe} / \mathit{A}$$

Linear absorption coefficient (μ_m for a multi-element compound per unit volume , units cm⁻¹) :

$$\mu_{\rm I} = \rho_{\rm n} \sum c_j \sigma_{{\rm pe},j} = \rho_{\rm m} \frac{\sum c_j A_j \mu_{{\rm m},j}}{\sum c_j A_j} = \rho_{\rm m} \sum x_j \mu_{{\rm m},j}$$

Physical meaning : the reciprocal value of $\mu_{\rm I}$, the attenuation factor, is the length after which the incoming intensity is reduced by a factor 1/e.

Reflectometry
Critical angle

Master relation

$$n(z) = 1.0 - \delta - i\beta = 1.0 - \frac{\lambda^2 r_0}{2\pi} N_{\rm A} \rho_{\rm m} \frac{\sum c_j (Z_j + f'_j)}{\sum c_j A_j} - \frac{i\mu_1 \lambda}{4\pi}$$

Critical angle :

 $\cos \theta_{\rm c} = n$

This equation gives, with $\cos\theta\approx 1.0-\frac{\theta^2}{2}$:

$$\theta_{\rm c}^2 = \frac{4\pi r_0}{k_0^2} N_{\rm A} |\rho_{\rm m}| \frac{\sum c_j (Z_j + f_j')}{\sum c_j A_j} = \frac{\lambda^2}{\pi} |\rho| = \frac{\lambda^2 r_0}{\pi} |\rho_{\rm e}|$$

Origins of reflectivity

Absorption and mass density

Relation between mass density and imaginary part of refractive index

$$n(z) = 1.0 - \delta - i\beta = 1.0 - \frac{\lambda^2 r_0}{2\pi} N_A \rho_m \frac{\sum c_j (Z_j + f_j')}{\sum c_j A_j} - \frac{i\mu_l \lambda}{4\pi}$$
$$n(z) = 1.0 - \delta - i\beta = 1.0 - \frac{\lambda^2}{2\pi} (\rho' + i\rho'')$$
$$\beta = \frac{\lambda^2 \rho''}{2\pi} = \frac{\mu_l \lambda}{4\pi} = \rho_m \frac{\lambda}{4\pi} \frac{\sum c_j A_j \mu_{m,j}}{\sum c_j A_j}$$

Origins of reflectivity

Determination of the mass density

Two relations between the mass density and the obervables

$$q_{c} = \sqrt{16\pi r_{0} N_{A} \rho_{m} \frac{\sum c_{j}(Z_{j} + f_{j}')}{\sum c_{j} A_{j}}}$$
$$\beta = \frac{\lambda^{2} \rho''}{2\pi} = \frac{\mu_{I} \lambda}{4\pi} = \frac{\rho_{m} \lambda}{4\pi} \frac{\sum c_{j} A_{j} \mu_{m,j}}{\sum c_{j} A_{j}}$$

 q_{c} and β (or ρ' and ρ'') are correlated !

Origins of reflectivity

Determination of the mass density

Binary compound PQ_x

With q_c , β , determine x :

$$x = \frac{\beta \Gamma (Z_{\rm P} + f_{\rm P}') - q_{\rm c}^2 A_{\rm P} \mu_{\rm P}}{q_{\rm c}^2 A_{\rm Q} \mu_{\rm Q} - \beta \Gamma (Z_{\rm Q} + f_{\rm Q}')}$$

with

$$\Gamma = 64\pi^2 r_0 N_{\rm A}/\lambda$$

Origins of reflectivity

Determination of the mass density

$$n(E) = 1.0 - \delta - i\beta = 1.0 - \frac{\lambda^2 r_0}{2\pi} N_{\rm A} \rho_{\rm m} \frac{\sum c_j (Z_j + f'_j(E) + if''_j(E))}{\sum c_j A_j}$$

Kramers-Kronig relation between f'(E) et f''(E) :

$$f'(E) = Z^* - \frac{2}{\pi} P \int_0^\infty \frac{x f''(x)}{x^2 - E^2} dx$$

Origins of reflectivity

How to use this correlation between q_c et β ?

- \blacktriangleright if the experimental data are not so good : nothing ! don't refine β
- ▶ if the data are excellent : use the relation as a validation tool
- for a binary compound PQ_x : possible to determine x

Verification with REFLECTOOLS

Once the reflectivity curve has been obtained, how to analyze it?

The lost phases

In reflectivity, as in diffraction, one measures $I(q) \propto |F(q)|^2$. The "structure factor" F(q) is easy to calculate from the electronic density :

$$F(\boldsymbol{q}) \propto \int
ho(\boldsymbol{r}) \mathrm{e}^{i \boldsymbol{q} \boldsymbol{r}} d\boldsymbol{r}$$

The model $\rho(\mathbf{r})$ to be found is directly related to the structure factor in the Born approximation (simple scattering) :

$$\rho(\mathbf{r}) \propto \int F(\mathbf{q}) e^{-i\mathbf{q}\mathbf{r}} d\mathbf{q}$$

 ${m F}({m q}) = |{m F}({m q})| e^{i\phi}$; ϕ is not measured

Analysis and Methodology

Classical analysis

Classical analysis - model dependent

Initial model $\rho(z)$

 Analysis and Methodology

Classical analysis

The reflectivity is calculated - exactly - according to the Parratt formula.

It is a recursive formula and it is non-linear, which makes its use in classical optimisation algorithms difficult

Calculated reflectivity - Parratt's formula

$$\begin{split} \psi(z) &= \exp(ikz) + R \exp(-ikz), & z \leq -d \quad (1) \\ \psi(z) &= A[\exp(ik_{f}z) + R_{s} \exp(-ik_{f}z)], & -d \leq z \leq 0 \quad (2) \\ \psi(z) &= T \exp(ik_{s}z) & z \geq 0 \quad (3) \end{split}$$

$$k_{\rm f} = \sqrt{k_{\rm i}^2 \sin^2 \theta - k_{\rm i}^2 (1 - n_{\rm f})^2}$$
 (4)

Analysis and Methodology

└─Parratt - single layer

$$R = \frac{R_F + R_{\rm s} e^{2ik_{\rm f}d}}{1 + R_F R_{\rm s} e^{2ik_{\rm f}d}} e^{-2ikd},$$
(5)

where R_s and R_F are the Fresnel reflectivities of the substrate and the layer :

$$R_{\rm s} = \frac{k_{\rm f} - k_{\rm s}}{k_{\rm f} + k_{\rm s}},\tag{6}$$

$$R_F = \frac{k - k_{\rm f}}{k + k_{\rm f}} \tag{7}$$

Analysis and Methodology

Parratt - multilayer

The Fresnel reflectivity for each sublayer :

$$R_{F,N+1} = rac{q_N - q_{N+1}}{q_N + q_{N+1}}, \qquad q = 2k$$

Analysis and Methodology

Parratt - multilayer

$$R_{j} = \frac{R_{F,j+1} + R_{j+1}e^{iq_{j+1}\Delta z_{j+1}}}{1 + R_{F,j+1}R_{j+1}e^{iq_{j+1}\Delta z_{j+1}}}$$

Start with the substrate j = N where $R_{N+1} \equiv 0$ and, consequently :

$$R_N = \frac{q_N - q_s}{q_N + q_s}$$

Calculate $R_{N-1} \cdots R_0$ and then $r = |R_0|^2$

Analysis and Methodology

Parratt - multilayer

$$R_{j} = \frac{R_{f,j+1} + R_{j+1}e^{iq_{j+1}\Delta z_{j+1}}}{1 + R_{f,j+1}R_{j+1}e^{iq_{j+1}\Delta z_{j+1}}}$$

where the fitting parameters are :

• thickness : Δz_{j+1}

• density :
$$q_j = q_0 n_j$$

• roughness : $R_j \Rightarrow R_j \exp(-q_{j-1}q_j\sigma_j^2)$

Analysis and Methodology

Parratt - multilayer

Least-squares difficulties for Parratt

- non-linear iterative methods
- trapping in false minima
- starting point should be close to the final solution
- maximum number of layers : N = 3
- adjustment very often done manually

Comparison of algorithms

Multidimensionnal radius of convergence

$$\tau = \sqrt{\sum_{i} \left(\frac{p_i - p_{im}}{p_{im}}\right)^2}$$

au	d	ρ	σ_1	σ_2	GA1	GA2	SA	S'plex	F'4c	P32	IMD
0.4	240.0	1.20	12.0	8.0	yes	yes	yes	yes	yes	yes	no
0.5	150.0	0.75	7.5	3.75	yes	yes	yes	yes	yes	no	no
2.5	450.0	2.25	22.5	11.25	yes	yes	yes	no	no	no	no
7.0	900.0	4.50	45.0	22.5	yes	yes	yes	no	no	no	no
15.0	1700	8.50	85.0	42.5	yes	yes	no	no	no	no	no

Initial model : d = 200, $\rho = 0.861$, $\sigma_1 = 10.0$, $\sigma_2 = 5.0$

Analysis and Methodology

Parratt - multilayer

Conclusion with respect to classical algorithmes

Genetic algorithms are preferable, but the layers should be well defined

A comparison of modern data analysis methods for X-ray and neutron specular reflectivity data

A. van der Lee, F. Salah, B. Harzallah, J. Appl. Cryst. (2007). 40, 820-833

Analysis and Methodology

-Multislice method

Multislice method

Born (kinematical) approximation

- Only valid for angles $\theta > 3\theta_c$

$$r = \left(\frac{4\pi\rho_{\infty}}{q^2}\right)^2 \left|\frac{1}{\rho_{\infty}}\int \frac{d\rho}{dz} e^{iqz} dz\right|^2 \propto \frac{1}{q^4}$$
$$r = \left(\frac{4\pi}{q^2}\right)^2 \left|F[\rho'(z)]\right|^2 = R_{\mathsf{F}}^2 \left|F|e^{i\phi}\right|^2$$

Inverse Fourier transform gives access to ρ'(z) at the condition that φ is known !

$$|F| = \sqrt{r/R_F^2} \to |F|e^{i\phi} = \mathcal{F}[\rho'(z)]$$
$$\rho'(z) = \mathcal{F}^{-1}\mathcal{F}[\rho'(z)] = \mathcal{F}^{-1}[|F|e^{i\phi}]$$

Derivative of the density function?

•
$$\rho'(z) = 0$$
 for $z < 0$ and $z > d$

Three important points :

- The derivative of the density profile is 'atomic-like'
- The derivative of the density profile is bounded
- The sensitivity to the first derivative indicates the importance of the change of the density profile to the reflectivity curve.

Analysis and Methodology

Lerative methods

Born approximation versus Parratt formalism

Analysis and Methodology

Lerative methods

Born is not unique!

 $|F(q)|^{2} = |\Delta\rho_{1} + \Delta\rho_{2}e^{iqd}|^{2} = \Delta\rho_{1}^{2} + \Delta\rho_{2}^{2} + \Delta\rho_{1}\Delta\rho_{2}\cos(2qd)$

$$r(q) = r_{\mathsf{F}}(q)|F(k)|^2 = \frac{16\pi^2}{q^4} (\Delta\rho_1^2 + \Delta\rho_2^2 + \Delta\rho_1 \Delta\rho_2 \cos(2qd))$$

Analysis and Methodology

Lerative methods

Iterative method in direct and Fourier space

Analysis and Methodology

└─ Machine learning

Machine learning

research papers

Fast fitting of reflectivity data of growing thin films using neural networks

Alessandro Greco,^a Vladimir Starostin,^a Christos Karapanagiotis,^b Alexander Hinderhofer,^{as} Alexander Gerlach,^a Linus Pithan,^c Sascha Liehr,^d Frank Schreiber^{as} and Stefan Kowarik⁴^a

www.nature.com/scientificreports

scientific reports

Check for updates

OPEN Deep learning approach for an interface structure analysis with a large statistical noise in neutron reflectometry

Hiroyuki Aoki^{1,22}, Yuwei Liu² & Takashi Yamashita³

Analysis and Methodology

└─ Machine learning

Machine learning

research papers

reflectivity data: automated analysis using mlreflect, experimental errors and feature engineering

Received 5 November 2021 Accepted 25 February 2022 Alessandro Greco,^a Vladimir Starostin,^a Evelyn Edel,^a Valentin Munteanu,^a Nadine Rußegger,^a Ingrid Dax,^a Chen Shen,^b Florian Bertram,^b Alexander Hinderhofer.^a* Alexander Gerlach^a and Frank Schreiber^a*

Agreement factors and residual fit

Global fit agreement :

$$wR_{\text{curve}} = \sqrt{\frac{\sum_{i} w_{i} (\log_{10} r_{\text{obs},i} - \log_{10} r_{\text{cal},i})^{2}}{(\sum_{i} w_{i} \log_{10} r_{\text{obs},i})^{2}}}$$

The 'best' fit agreement :

$$wR_{\exp} = \sqrt{\frac{N}{(\sum_{i} w_i \log_{10} r_{\text{obs},i})^2}}$$

$$\chi^2$$
 :

$$\chi^2 = (w R_{\rm curve} / w R_{\rm exp})^2$$

Agreement factors and residual fit

Local fit agreement :

$$\Delta(q_i) = \log_{10} r_{\text{obs}}(q_i) - \log_{10} r_{\text{cal}}(q_i)$$
$$\Delta(q_i) = \log_{10} q_i^4 r_{\text{obs}}(q_i) - \log_{10} q_i^4 r_{\text{cal}}(q_i)$$

Software

How to do the minimisation?

- specular (neutron & rayons-X)
- differents optimisation (classical, genetic)
- optical tables
- Fit on q_c , β , SLD, thickness, roughness
- correlated fitting between real and imaginary part
- fit and calculation on non-model parameters scale factor etc.
- single and multilayers
- correction for geometric effects
- soft X-rays : reflectivity depends on polarisation

Software

How to do the optimisation?

- ► STOCHFIT
 - specular
 - multi-slice refinement (permits to detect density gradients)
 - least-squares fit , stochastic fit
 - fit on SLD, thicknesses

Reporting an X-ray or neutron reflectometry experiment

The final structural model depends on :

- the instrumental parameters, including the scale factor
- the initial model
- the fixed and the free parameters
- the lower and upper bound of the free parameters
- constraints and restraints between parameters

These details should be mentioned in the manuscript or the supplementary information.

Reporting an X-ray or neutron reflectometry experiment

Report :

- Instrument used for data collection
- Data collection parameters
- Fitting program used
- Prior knowledge used
- Experimental and calculated curves (make available as supplementary material)
- Difference curves and agreement factors
- All optimisation details (see preceding slide)
- Final model parameters with esd's if available

A Bayesian approach (see McCluskey *et al.* - publication and REFNX software - is probably the best way to deal with this.

Software workshop

Demonstration and exercises

- Demonstration of the use of REFLEX
- Simulations
 - influence of thickness on q_c
 - influence of β on q_c
 - effect of instrumental parameters on the calculated reflectivity
 - effect of roughness on the reflectivity
 - upper limit of detectable thicknesses
- Classical fits
 - organic layer of 1000 Å on Si simulated data
 - single ZnS layer on Si
 - silica layer of 1000 Å on Si experimental data
 - oxydized niobium layer on sapphire
 - ideal periodic W/Si multilayer on Si
 - detection of fine details STOCHFIT

What is the difference between small-angle techniques?

All is defined by the momentum transfer q !

Reflectometry — Small angle scattering techniques

Geometry of small-angle scattering techniques

$$\begin{split} \mathsf{GISAS:} \ q_{\mathsf{X}} &= 0 \to q_{||} \approx 2k_0\theta, \, q_{\perp} \approx k_0(\alpha_f + \alpha_i) \\ \mathsf{Off}\text{-specular:} \ q_{\mathsf{y}} &= 0, 2\theta = \alpha_i + \alpha_f = \mathsf{Cst} \to q_{||} \approx k_0(\alpha_i^2 - \alpha_f^2)/2, \, q_{\perp} \approx 2k_0\alpha_f \\ \mathsf{Reflectivity:} \ q_{\mathsf{X}} &= 0, \, q_{\mathsf{y}} = 0, \, \alpha_i = \alpha_f \to q_{\perp} \approx 2k_0\alpha_f \end{split}$$

Key points to remember

- Angles are small → small wavevector transfer (0.0001 < q < 1 nm⁻¹)
- ▶ Reflectivity \rightarrow probe density profile perpendicular to surface
- Off-specular \rightarrow probe density correlations along q_X
- ▶ GISAS \rightarrow probe morphology parallel with the surface (along q_y) and perpendicular to it (along q_z)
- GISAS and off-specular scans are not the same (although both probe fluctuations parallel to the surface)!
 - ▶ GISAS, $q_{\parallel} = q_y$ is of first order with respect to in-plane angle $\Theta_f \rightarrow$ intermediate distances (1 nm 100 nm)
 - ▶ off-specular, $q_{\parallel} = q_{\rm X}$ is of second order with respect to out-of-plane angle $\alpha_{\rm f} \rightarrow \log$ distances (100 nm 1µm)

Grazing incidence diffraction : $\alpha_{\rm i}$ small, $\alpha_{\rm f}$ and $\Theta_{\rm f}$ large